Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(27): 6217-6226, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37381928

RESUMO

Interface effects in the room temperature ionic liquids (RTILs) 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimNTf2) were investigated using ultrafast infrared polarization selective pump-probe (PSPP) spectroscopy. The CN stretch mode of SCN- dissolved in the RTILs was used as the vibrational probe. The vibrational lifetime of the SCN- was the experimental observable. Quite similar single SCN- lifetimes were observed: 59.5 ± 0.4 ps in bulk BmimBF4 and 56.4 ± 0.4 ps in bulk BmimNTf2. Thin films of both RTILs with thicknesses in the range of 15-300 nm were prepared by spin coating on functionalized substrates. PSPP experiments were performed in a small-incidence reflection geometry. In the thin films, a second, shorter lifetime was observed in addition to the bulk lifetime, with the amplitude of the shorter lifetime increasing with decreasing film thickness. By modeling the thickness dependence of the lifetime amplitudes, the correlation length of the interface effect (constant for exponential falloff of the influence of the interface) was determined to be 44.6 ± 0.6 nm for BmimBF4 and 48.3 ± 2.2 nm for BmimNTf2. The values for the shorter film lifetimes were 12.6 ± 0.1 ps for BmimBF4 and 20.2 ± 0.6 ps for BmimNTf2; the substantial differences from the bulk lifetimes showed that some of the SCN- anions near the interface experience an environment distinct from that of the bulk. It was also found that for the BmimNTf2 sample only, some of the SCN- anions reside in the surface functionalized layer with two distinct environments having distinct lifetimes.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35897377

RESUMO

To study the removal effect of bottom ash of biomass power plants and its modified products on zinc (Zn2+) in aqueous solution, a series of indoor experiments is carried out. The aim of this work is to explore a method to improve the ability of biomass ash to remove Zn2+ from aqueous solution and obtain its adsorption characteristics of Zn2+ in aqueous solution; on this basis, the feasibility of its application in the treatment of Zn2+-contaminated wastewater is analyzed. The mesoporous siliceous material is used to modify the biomass, and the modified material is functionalized with 3-aminopropyltriethoxysilane. The results show that the specific surface area of modified biomass ash is nine times that of the material before modification. The adsorption capacity of Zn2+ on the material increases with the increase of pH, and pH 6 is the optimum pH to remove Zn2+ from the aqueous solution. The Langmuir model and Freundlich model can show better fits for biomass ash and the modified material, respectively. Thermodynamic analysis results show that the adsorption of Zn2+ is spontaneous and endothermic in nature. The adsorption of Zn2+ onto biomass and modified biomass ash follow pseudo-first-order and pseudo-second-order kinetics, respectively.


Assuntos
Poluentes Químicos da Água , Adsorção , Biomassa , Cinza de Carvão , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Água , Poluentes Químicos da Água/análise , Zinco/análise
3.
Bioinorg Chem Appl ; 2022: 3565550, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35706847

RESUMO

A three-year in situ remediation experiment was carried out to understand the effect of combined phytoremediation with chemical materials on the bioavailability of heavy metals in soil. Indigenous weed (Setaria pumila), energy plant (Pennisetum sp.), cadmium (Cd)-hyperaccumulator (Sedum plumbizincicola), and copper (Cu)-tolerant plant (Elsholtzia splendens) were used as the phytoremediation plants aided by micron hydroxyapatite (1% wt). The bioavailability of Cu and Cd in soil was evaluated during the three years. The results showed that the four plants combined with micron hydroxyapatite significantly increased soil pH and soil organic carbon (SOC), and decreased Cu and Cd fractions extracted by CaCl2 and diffusive gradients in thin films (DGT) than the untreated soils, respectively. Because of the large biomass, the accumulation of Cu and Cd is the largest in Pennisetum sp. followed by Elsholtzia splendens, Sedum plumbizincicola, and Setaria pumila. The bioavailability of Cu and Cd is significantly negatively correlated with pH, soil organic carbon, available phosphorus, and available potassium. Moreover, the correlation is mainly related to the addition of micron hydroxyapatite. The accumulation of Cu and Cd is the combined action of the soil bioavailability of Cu, Cd, and biomass. Our results suggest that Pennisetum sp. can act as an appropriate remediation plant for phytoremediation aided by amendments.

4.
Bioinorg Chem Appl ; 2021: 2412646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712312

RESUMO

To study the remediation effect of hydroxyapatite with different particle sizes, a field in situ experiment was carried out by adding conventional hydroxyapatite (0.25 mm) and microhydroxyapatite (3 µm) and nanohydroxyapatite (40 nm) to the contaminated soil and planting Elsholtzia splendens. The distribution and migration of copper (Cu) and cadmium (Cd) in soil were investigated after 4 years. The results show that the application of three different particle sizes of hydroxyapatite significantly raise the soil pH, total phosphorus, and soil organic carbon. Moreover, the addition of hydroxyapatite can reduce the EXC fraction of Cu and Cd by 73.7%-80.1% and 20.8%-35.2%, respectively. In addition, the concentrations of Cu and Cd in >2 mm, 0.25-2 mm, 0.053-0.25 mm, and <0.053 mm aggregate are significantly increased. This improvement indicates that there are risks which may cause the increasing of total Cu and Cd in the soil where the pollution sources still exist. Furthermore, the content of soil colloid is significantly increased, and the colloidal Cu and Cd distribution percentage have been significantly increased by 49.9%-120% and 30.3%-181%. This result illustrates that the application of hydroxyapatite may greatly increase the possibility of colloid and dust migration of Cu and Cd.

5.
Emerg Microbes Infect ; 9(1): 1695-1701, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32615862

RESUMO

The COVID-19 pandemic has caused a global public health crisis. There is a pressing need for evidence-based interventions to address the devastating clinical and public health effects of the COVID-19 pandemic. The Chinese scientists supported by private and government resources have adopted extensive efforts to identify effective drugs against the virus. To date, a large number of clinical trials addressing various aspects of COVID19 have been registered in the Chinese Clinical Trial Registry (ChiCTR), including more than 200 interventional studies. Under such an urgent circumstance, the scope and quality of these clinical studies vary significantly. Hence, this review aims to make a comprehensive analysis on the profiles of COVID-19 clinical trials registered in the ChiCTR, including a wide range of characteristics. Our findings will provide a useful summary on these clinical studies since most of these studies will encounter major challenges from the design to completion. It will be a long road for the outcomes of these studies to be published and international collaboration will help the ultimate goals of developing new vaccines and anti-viral drugs.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus , Ensaios Clínicos como Assunto/estatística & dados numéricos , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Sistema de Registros , COVID-19 , China , Humanos , Medicina Tradicional Chinesa , Pandemias , Projetos de Pesquisa , SARS-CoV-2
6.
Adv Mater ; 32(26): e1903937, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32419234

RESUMO

Organic-inorganic hybrid lead-halide perovskite materials (ABX3 ) have attracted widespread attention in the field of photovoltaics owing to their impressive optical and electrical properties. However, obstacles still exist in the commercialization of perovskite photovoltaics, such as poor stability, hysteresis, and human toxicity. A-site cation engineering is considered to be a powerful tool to tune perovskite structures and the resulting optoelectronic properties. Based on the selection and combination of A-site cations, three types of perovskite structures, i.e., 3D perovskite, reduced-dimensional (2D/quasi-2D) perovskite, and 2D/3D hybrid perovskite can be formed. Herein, the remarkable breakthroughs resulting from these three perovskite structures are summarized, and their corresponding properties and characteristics, as well as their intrinsic disadvantages, are highlighted. By summarizing recent research progress, a new viewpoint for improving the performance and stability of perovskite photovoltaics is provided.

7.
J Am Chem Soc ; 142(20): 9482-9492, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32349470

RESUMO

The structural dynamics of planar thin films of an ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimNTf2) as a function of surface charge density and thickness were investigated using two-dimensional infrared (2D IR) spectroscopy. The films were made by spin coating a methanol solution of the IL on silica substrates that were functionalized with alkyl chains containing head groups that mimic the IL cation. The thicknesses of the ionic liquid films ranged from ∼50 to ∼250 nm. The dynamics of the films are slower than those in the bulk IL, becoming increasingly slow as the films become thinner. Control of the dynamics of the IL films can be achieved by adjusting the charge density on substrates through multilayer network surface functionalization. The charge density of the surface (number of positively charged groups in the network bound to the surface per unit area) is controlled by the duration of the functionalization reaction. As the charge density is increased, the IL dynamics become slower. For comparison, the surface was functionalized with three different neutral groups. Dynamics of the IL films on the functionalized neutral surfaces are faster than on any of the ionic surfaces but still slower than the bulk IL, even for the thickest films. These results can have implications in applications that employ ILs that have electrodes, such as batteries, as the electrode surface charge density will influence properties like diffusion close to the surface.

8.
RSC Adv ; 9(2): 993-1003, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35517623

RESUMO

Phytoremediation is a potential cost-effective technology for remediating heavy metal-contaminated soils. This method was used to evaluate the biomass and accumulation of copper (Cu) and cadmium (Cd) of plant species grown in contaminated soil and their biological and physical effects on the soil. In co-contaminated soils with copper (Cu) and cadmium (Cd), a three-year field experiment was conducted by planting four plant species in the co-contaminated acidic soil treated with hydroxyapatite. The four species produced different amounts of biomass in this order: Pennisetum sp. > Elsholtzia splendens > Setaria lutescens > Sedum plumbizincicola. Over three growing seasons, the best accumulators of Cu and Cd were Elsholtzia splendens and Sedum plumbizincicola, respectively. Overall, Pennisetum sp. was the best species for Cu and Cd removal when biomass was considered. The four plant treatments could improve the content of >0.25 mm mechanically stable (DR0.25) and water-stable (WR0.25) aggregates and significantly improve the aggregate mean mass diameter (MWD) and the geometric mean diameter (GMD). The largest increase was with the treatment of Pennisetum sinese, while the fractal dimension (FD) of mechanically stable aggregates could be significantly reduced by the treatment of Pennisetum sp. Hydroxyapatite and phytoremediation could improve the soil enzyme activity, and Elsholtzia splendens had the best effect in this respect. This study will provide a better understanding of the remediation of heavy metal contaminated soil.

9.
Water Sci Technol ; 2017(1): 115-125, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29698227

RESUMO

Ash produced by biomass power plants has great potential for the removal of heavy metal ions from aqueous solution. The pollution of toxic heavy metals to water is a worldwide environmental problem. Discharges containing copper, in particular, are strictly controlled because the excessive copper can cause serious harm to the environment and human health. This work aims to investigate the adsorption characteristics of copper ions in aqueous solution by biomass ash and the modified products, and to evaluate their potential application in water pollution control. The biomass ash was modified with a mesoporous siliceous material and functionalized with 3-aminopropyltriethoxysilane. The surface properties of the biomass ash and the new matrix were studied to evaluate their adsorption property for Cu2+ ions at different pHs, initial metal concentrations and the thermodynamic and kinetic were studied. The chemical and morphological properties of this modified material are analyzed; the specific surface area of the modified biomass ash was nine times that of the initial ash. Both of the two materials showed a strong affinity for Cu2+, and the Langmuir model could best represent the adsorption characteristics of Cu2+ on the two kinds of materials. The adsorption capacity of copper on the material increased with the increase of pH and pH 6 was the optimum pH. Thermodynamic analysis results showed that the adsorption of Cu2+ was spontaneous and endothermic in nature. The adsorptions of Cu2+ onto the modified biomass ash followed pseudo-second-order kinetics.


Assuntos
Biomassa , Cobre/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Íons , Cinética , Metais Pesados/química , Centrais Elétricas , Propriedades de Superfície , Termodinâmica , Água , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...